
PROBLEMS IN MEASURE THEORY

1. Topology of the real line and plane

Say that two rectangles are disjoint if their closures do not intersect, and almost

disjoint if their interiors do not intersect.

Problem 1.1. Let U be an open subset of the real line. For x ∈ U, let

ax = inf{a < x : (a, x) ⊆ U}, bx = sup{b > x : (x, b) ⊆ U}.

If Ix = (ax, bx), then verify the following:

(1) U =
∪

x∈U Ix.

(2) Ix ∩ Iy ∕= ∅ if and only if Ix = Iy.

Conclude that every open subset of the real line can be written as a countable union

of disjoint open intervals.

Problem 1.2. Can an open disc in the plane be written as a countable union of

disjoint open rectangles?

Hint. Recall the definition of disjoint open rectangles.

Problem 1.3. Let U be an open set in the plane. Follow the following instructions:

(1) Consider the grid in the plane formed by taking all closed squares S of side

length 1 whose vertices have integer coefficients. Here are some guide lines:

Accept S if S ⊆ U,
Reject S if S ⊆ complement of U,

Tentatively accept S otherwise.

(2) As a second step, bisect the tentatively accepted squares of length 1 into 4

squares with side length 1/2. Again follow the guide lines given in (1).

(3) At each step, bisect the tentatively accepted squares of length l into 4 squares

with side length l/2. Again follow the guide lines given in (1).

(4) Repeat the above procedure indefinitely to obtain a countable collection of

almost disjoint open squares.

Conclude that any open subset of the plane can be written as a countable union of

almost disjoint open squares.

2. Naive Measure Theory

Problem 2.1. If a rectangle R is union of finitely many rectangles R1, ⋅ ⋅ ⋅ , RN

then show that

Area(R) ≤
N∑
i=1

Area(Rk),

where the equality holds if the union is disjoint.
1



2 PROBLEMS IN MEASURE THEORY

Hint. This is not obvious. To get an idea, draw a picture for N = 3.

Problem 2.2. Let C denote the Cantor set. Show that for � > 0, there exist finitely

many intervals I1, ⋅ ⋅ ⋅ , Ik in the real line such that

C ⊆
k∪

i=1

Ii and

k∑
i=1

length of Ii < �.

Problem 2.3. Let L be a finite line segment in the plane. Show that for � > 0,

there exist finitely many squares S1, ⋅ ⋅ ⋅ , Sk in the plane such that

L ⊆
k∪

i=1

Si and

k∑
i=1

area of Si < �.

Whether similar assertion holds true for a line in the plane?

Let U be an open subset of the plane. By Problem 1.3, U may be written as a

countable union of disjoint open squares Sn. We may define the “area” of U to be

the sum of the area of Sn. The fact that this definition is independent of the choice

of Sn lies deeper.

Problem 2.4. If U is an open subset of the plane then for any x in the plane,

show that the area of the coset U + x = {u+ x : u ∈ U} of U is same as that of U.

Problem 2.5. Let U be an open square in the plane. Show that the area of U is

less than or equal to

inf

∞∑
j=1

Area(Qj),

where the infimum is taken over all countable coverings U ⊆
∪∞

j=1Qj by closed

squares.

Hint. Use the compactness of U and then apply Problem 2.1.

Problem 2.6. Let L denote a line in the plane. Show that

inf

∞∑
j=1

Area(Qj) = 0

where the infimum is taken over all countable coverings L ⊆
∪∞

j=1Qj by closed

squares.

Problem 2.7. Construct a Cantor-like set in the plane.

3. Lebesgue Measurable Sets

Problem 3.1. Let A be a subset of [0, 1] consisting of all numbers which do not

have the digit 4 appearing in their decimal expansion. Find the Lebesgue measure

of A.

Problem 3.2. Consider the set D obtained by taking the union of open intervals

which are deleted at the steps 1, 3, 5, ⋅ ⋅ ⋅ in the construction of a Cantor set. Show

that the boundary of D has positive Lebesgue measure.
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Problem 3.3. Show that the Lebesgue measure of any line in the plane is zero.

Problem 3.4. Find the Lebesgue measure of the set constructed in Problem 2.7.

Problem 3.5. Let A be a bounded subset of the real line of positive Lebesgue

measure and let D = {x− y : x, y ∈ A}.
(1) Verify that the function g given by

g(t) = Lebesgue measure of A ∩ (A+ t) for real number t

is continuous, where A+ t = {x+ t : x ∈ A}.
(2) Use (1) to prove that D contains an interval.
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